USING MINIX

By now you should have installed MINIX and gotten to the point where you can

use it. In this chapter we will discuss some basic and some less basic pomts about

using it. Once again, if you are not already reasonably familiar with using UNIX,

you should first read one of the many books about it. . |

As a general rule, most aspects of MINIX work the same way as they do in UNIX.
When you log in, you get a shell, which is functionally similar to the standard V7
- shell (Bourne shell). Most programs are called the same way as in UNIX, have the
same flags, and perform the same functions as their UNIX counterparts. The

(default) keyboard editing conventions are also similar to V7 UNIX: the backspace

key (CTRL-H) is used to correct typing errors, the @ symbol is used to erase the
current lnput hne, CTRL-S is used to stop the screen from scrolling out of view,
CTRL-Q is used to start the screen moving again, and CTRL-D is used to indicate

end-of-file from the keyboard., for example, to log out. These key bmdlngs can be

changed using the IOCTL system call and szty program ‘the same way as in UNIX.

6.1. MAJOR COMPONENTS OF MINIX

Although MINIX consists of hundreds of files, programs, and procedures, from
the user’s perspective, a few of them stand out as being especially important. In
this section we will take a quick look at a few of the most important ones.

SEC. 6.1 MAJOR COMPONENTS OF MINIX | 75

6.1.1. The Shell

The MINIX command interpreter is functionally identical to the Version 7 com-
mand interpreter, known as the shell (or the Bourne shell in honor of its inventor,
S. R. Bourne). When a user logs in, the shell starts out by displaying the prompt, a
character such as a dollar sign, which tells the user that the shell is waiting to accept
a command. If the user now types:

date

for example, the shell sees to it that the date program is run. When date ﬁmshes,
the shell types the prompt again and tries to read the next input line.

The user can spemfy that standard output be redirected to a file by typing, for
example

date >file

Similarly, standard input can be redirected, as in:
sort <file1 >file2

which invokes the sort program with input taken from file!/ and output sent to file2.

The output of one program can be used as the input for another program by con-
necting them with a pipe. Thus

cat file1 file2 file3 | sort >outfile

invokes the cat program to concatenate three files and send the output to sort to

arrange all the lines in alphabetical order. The output of sort is redirected to the file
outfile.

If a user puts an ampersand after a command, the shell does not wait for it to
complete. Instead it just gives a prompt immediately, Consequently:

cat file1 file2 file3 | sort >outfile &

starts up the sort as a background job, allowmg the user to continue working nor-
mally while the sort is going on.

It is possible to collect several commands together in a file called a shell script

- and have them executed by just typing the name of the shell script. The shell also

recognizes some programming constructs, such as if, for, while, and case, so it is
possible to write shell scripts that act like programs. For more information about
the MINIX shell, consult any book about the UNIX system because the MINIX and

Bourne shells are practlcally indistinguishable to the user (although they are very
different internally). _

1
b"
-
- ol T . N . N ik . . ™ . S I . . — - " g T - — - . o
n O . . B -0 B _ -

76 USING MINIX | CHAP. 6

6.1.2. Editors

MINIX comes with several editors, among them a line-oriented editor called ed,
a simple full-screen editor called mined, a powerful multifile, multiwindow editor
called elle, and a clone of the well-known Berkeley vi editor, called elvis. People
often have very strong, almost emotional, attachments to particular editors, so we
have provided a wide choice. Try them all and see which you like best.

The ed editor is based on the V7 editor used on old mechanical teletypes.
- Although it still useful under certain circumstances, for daily use, it is rarely used
nowadays.

In contrast, mined is a simple, but modern full-screen editor. Its greatest virtue
1s that it can be learned in about 10 minutes. When you type an ordinary ASCII
character, that character is inserted on the screen (and in the file being edited) at the
position of the cursor. This may sound obvious, but many editors require you to
first enter a special “insert mode,” enter the text, and then leave insert mode.

Commands to mined, such as moving the cursor or terminating the edit session,
are handled by control characters, such as CTRL-F (go forward one word) or by the
keys such as the four arrows on the numeric keypad at the right-hand side of the
IBM PC keyboard. There are about three dozen commands in all, mostly chosen for
their mnemonic value (e.g., CTRL-A moves the cursor to the start of the current
line; CTRL-Z moves it to the end of the line). -

Some.of the commands move the cursor around the screen, scroll the screen for-

ward or backward, or position it at the beginning or end of the file. Other com- N
mands delete text around the cursor (e.g., delete the word to the left or right of the

cursor, or delete the tail of the current line). There are also commands available to
manipulate blocks of text, such as deleting a block of text or saving it in a buffer to
be copied to another part of the file. Finally, there are commands for searching for-

ward or backward for a given text pattern, where the text pattern may contain a

mixture of ordinary ASCII characters and “wild card” characters for matching sets
of characters, end-of-line, and so on. '

Another editor is elle, which can be thought of as a fast, simplified version of

the famous emacs editor. It has about 100 commands, and can edit multiple files in

full-screen or split-screen mode. Many sophisticated users regard emacs as the last
word 1n editing.

Finally, there is elvis, an editor that has nearly all the features of the Berkeley vi
and ex editors. All four editors have different properties. If you do not already
have a preference, try them all until you find one you like.

6.1.3. The C Compiler

MINIX comes with a C compiler that accepts programs written in C as described
in the Kernighan and Ritchie book. It also accepts many nonstandard features that
are commonly used, but gives a warning message about each of them when asked

TN
! . 1
k‘- P

SEC. 6.1 MAJOR COMPONENTS OF MINIX 77

to. It also provides the standard header ﬁles normally provided with C compilers.
The command

CC prog.c

compiles the program on the file prog.c and leaves the executable binary program
on a file called a.out. -

The compiler knows about most of the standard C compller flags, including —¢
(compile but do not link), -0 (put the compiler output on a specific file instead of
a.out), =D (define a macro), and -I (search a given directory for include files). Like
the Version 7 compiler, this one also has a preprocessor for #define, #include, and
#Hifdef statements.

One minor difference between the MINIX compiler for the IBM PC and most
other C compilers is that this one produces .s rather than .o files as a result of the ~¢
flag. Furthermore, the assembler and linker are combined into a single program,
asld, that reads a list of .s files and possibly some library archives, and produces an
executable file. The members of the library archives are also .s files, although both
they and the compiler output gre compacted to save time and space. The programs
libpack and libupack are provided to convert assembly language files from ASCII to

compact format and back. The C compilers for the 68000 machines produce normal
.0 files.

6.1.4. The Utility Programs

MINIX comes with more than 175 utility programs. One rough grouping is t(j
classify them into five categories as follows:
Compiler utilities.
File and directory manipulation.
Text file processing.
System administration.

Miscellaneous.

I o a e

The compiler utilities are programs such as make, for keeping track of inter-
dependent source and object files; ar, for maintaining libraries; and size, for deter-
mining the size of the various segments in a binary program.

The file and directory manipulation programs include cat, cp)dd mv, and pr, for
moving files around; mkdir, rmdir, and ls, for managing directories; and chmod, and
chown, for dealing with protection.

A variety of programs are present for working with text files in addition to the
editors, including the well-known filters grep, rev, sort, tr, uniq, and we. The pro-
gram gres searches a set of files for a pattern, and replaces qccurrences with a given

78 - USING MINIX CHAP. 6

pattern. The MINIX text justifiers are roff, and nroff, which have a wide variety of
commands for controlling page layout. -

Some utility programs deal with system administration. These include df, for
determining how much space a file system has, mkfs, for making new file systems,
mount and umount for attaching and detaching file systems to the main file tree, N
passwd for changing passwords, and su for becoming superuser.

The last category is for programs that do not fit in anywhere else. Among these
are date, for setting and displaying the date and time, pwd, for printing the working
directory, and stty, for setting the terminal parameters. There are many more.

6.1.5. The Library Procedures

MINIX also comes with over 200 library procedures that can be called from C
programs. Like the utilities, these can also be divided into several rough groups:

1. System calls.
2. ANSI C procedures.

3, Miscellaneous.

The system call procedures allow C programs to issue system calls. There are ..\
more than 40 system calls available, including OPEN, READ, WRITE, CLOSE, LSEEK, N
PIPE, FORK, and EXEC. For almost every system call, there is a library procedure
with exactly the same parameters and results as in Version 7. It should be possible
to take almost any portable C program that runs under Version 7 and compile and
run it on MINIX. Furthermore, most reasonable C programs written for other ver-
sions of UNIX should also work on MINIX, provided that they do not use any of the
more bizarre system calls available in other versions and do not make any implicit
assumptions about the sizes of integers and pointers (which are not the same on the
68000 versions of MINIX).

The second category is the set of procedures defined ANSI C. The collection is
not yet complete, but most of the more common procedures are present, including
standard 1/O and string handling. Calls such as fopen, fread, fwrite, fclose, and
Jprintf are all present, as are strcat, strcmp, strcpy, and strlen, to name just a few.

The last category consists of a mixture of other procedures, which span a wide
range, from encryption (crypt) to temporary file creation (mktemp).

6.1.6. Relation with Other Operating Systems

Like UNIX, MINIX is a complete operating system. It does not require any other
- operating system to help it. On the IBM PC, Atari, and Amiga, when MINIX is run-
ning it takes over the entire computer and runs on the bare hardware. For the
Macintosh version, this is not true. There MINIX runs as a user program on top on

SEC. 6.1 MAJOR COMPONENTS OF MINIX 79

the Macintosh operating system. Since MINIX has different system calls than MS-
DOS, TOS, and AMIGA-DOS, it is not possible to run programs written for other
operating systems on MINIX. .
Nevertheless, 1t 1s possible to partition your hard disk with one or more parti-
tions for MINIX and one or more partitions for other operating systems. Further-
more, you can transport files back and forth between MINIX and MS-DOS, TOS, or
AMIGA-DOS, using utility programs have been provided for this purpose. The utili-
ties reside in /usr/bin and are invoked in the usual way, by just typing their names
and arguments. The first program for the IBM PC, dosdir, reads an MS-DOS diskette

and tells what 1s on it. The program can also be told to list a specific directory on
the diskette.

The second program, dosread reads a file from an MS-DOS diskette and copies it
to standard output, which, of course, can be redirected to a file. When the -a flag is
given, the MS-DOS conventions for ASCII files are converted to the MINIX conven-
tions, so the resulting file appears to be a normal text file.

The third program, doswrite, copies its standard input to a diskette containing an
MS-DOS file system, again doing format conversion if requested. It does not create
directories, however, so all the necessary directories must be in place on the
diskette when it is inserted into the drive. As an aside, these three programs are all
links to the same file, which checks to see how it was called to see what it should
do.

For the 68000-based systems, analogous programs are provided to get files back
and forth.

6.2. PROCESSES AND FILES IN MINIX

Two key concepts in MINIX are processes and files. Since these may not be
immediately familiar to people who are accustomed to other operating systems,
below we give a brief introduction to them. Processes and files are accessed by sys-

tem calls, services provided by the operating system. Some of the more important
process and file system calls will be discussed below.

6.2.1. Processes

A process 1s basically a program in execution. It consists of the executable pro-
gram, the program’s data and stack, its program counter, stack pointer, and other
registers, and all the other information needed to run the program. -

The easiest way to get a good intuitive feel for a process is to think about a
timesharing system. Periodically, the operating system decides to stop running one
process and start running another, for example, because the first one has had more
than its share of CPU time in the past second.

When a process is temporarlly susPended like thlS it must later be restarted in

80 USING MINIX . CHAP. 6

exactly the same state it had when it was stopped. This means that all information
“about the process must be explicitly saved somewhere during the suspension. For
example, if the process has several files open, the exact position in the files where
the process was must be recorded somewhere, so that a subsequent READ given
after the process is restarted will read the proper data. In many operating systems,
all the information about each process, other than the contents of its own address
space, 1s stored in an operating system table called the process table, which is an
array (or linked list) of structures, one for each process currently in existence.

Thus, a (suspended) process consists of its address space, usually called the core
image (in honor of the magnetic core memories used in days of yore) and its pro-
cess table entry, which contains its registers, among other things. -

The key process management system calls are those dealing with the creation
and termination of processes. Consider a typical example. The shell reads com-
mands from a terminal. The user has just typed a command requesting that a pro-
gram be compiled. The shell must now create a new process that will run the com-
piler. When that process has finished the compilation, it executes a system call to
terminate itself. - .

It a process can create one or more other processes (referred to as child

processes) and these processes in turn can create child processes, we quickly arrive
at the process tree structure of Fig. 6-1.

P
i
. .
L
|_ L] N
.- . 1
| o .'. 7
. . -)
H‘"- -
—_——
(: -
= AK
o o 1.\;

Fig. 6-1. A process tree. Process A created two child processes, B and C. Process
B created three child processes, D, E, and F.

Other process system calls are available to request more memory (or release
unused memory), wait for a child process to terminate, and overlay its program with
a different one. _

Occasionally, there is a need to convey information to a running process that is
not sitting around waiting for it. For example, a process that is communicating with
another process on a different computer does so by sending messages over.a net-
work. To guard against the possibility that a-message or its reply is lost, the sender
may request that 1ts own operating system notify it after a specified number of
seconds, so that it can retransmit the message if no acknowledgement has been.
received yet. After setting this timer, the program may continue doing other work.

When the 'specified number of seconds has elapsed, the operating system sends a
signal to the process. The signal causes the process to temporarily suspend what-
ever it was doing, save its registers on the stack, and start running a special signal

SEC. 6.2 PROCESSES AND FILES IN MINIX 81

handling procedure, for example, to retransmit a presumably lost message. When
the signal handler is done, the running process is restarted in the state it was just
before the signal. Signals are the software analog of hardware interrupts, and can
be generated by a variety of causes in addition to timers expiring. Many traps
detected by hardware, such as executing an illegal instruction or using an invalid
address, are also converted into signals to the guilty process.

Each person authorized to use MINIX is assigned a uid (user identification) by
the system administrator. Every process started in MINIX has the uid of the person
who started it (except for so-called setuid programs). A child process has the same
uid as its parent. One uid, called the superuser, has special power, and may violate
many of the protection rules. In large installations, only the system administrator
knows the password needed to become superuser, but many of the ordinary users

(especially students) devote considerable effort to trying to find flaws in the system
that allow them to become superuser without the password.

6.2.2. Files

A major function of the operating system is to hide the peculiarities of the disks
and other I/O devices, and present the programmer with a nice, clean abstract model
of device-independent files. System calls aré obviously needed to create files,
remove files, read files, and write files. Before a file can be read, it must be opened,
and after it has been read it should be closed, so calls are provided to do these
things. -

In order to provide a place to keep files, MINIX has the concept of a directory as
a way of grouping files together. A student, for example, might have one directory
for each course he was taking (for the programs needed for that course), another
directory for his electronic mail, and still another directory for his computer games.
System calls are then needed to create and remove directories. Calls are also pro-
vided to put an existing file in a directory, and to remove a file from a directory
Directory entries may be either files or other directories. Th1s model also gwes rise
to a hierarchy—the file system, as shown in Fig. 6-2. _ -

The process and file hierarchies both are organized as trees, but the snmlarlty
stops there. Process hierarchies usually are not very deep (more than three levels is
unusual), whereas file hierarchies are commonly four, five, or even more levels
deep. Process hierarchies are typically short-lived, generally a few minutes at most,
whereas the directory hierarchy may exist for years. Ownership and protection also
differ for processes and files. Typically, only a parent process may control or even
access a child process, but mechanisms exist to allow ﬁles and directories to be read
by a wider group than just the owner.

Every file within the directory hierarchy can be spemﬁed by giving its path~
name from the top of the directory hierarchy, the root directory. Such absolute
path names consist of the list of directories that must be traversed from the root
directory to get to the file, with slashes separating the components. In Fig. 6-2, the

82 _ ' USING MINIX ' CHAP. 6

Root directory

—_
Students Faculty
A
B e
1 LS
Robbert Matty l.eo Prof . Brown Prof . Green Prof . White
. "I N
iy RN e .
W N R - W :
J-1 g VAR
Courses Papers Grants Committees
M—
CS101 SOSP COST-11
. - .
Fig. 6-2. A file system for a university department. v L)

path for file CS101 1s /F aculty/Prof Brown/Courses/CS101. The leading slash indi-
cates that the path is absolute, that is, starting at the root directory (as opposed to a*
relative path starting at the working directory).

At every instant, each process has a current working directory, in Wthh path
names not beginning with a slash are looked for. In Fig. 6-2, if
/Faculty/Prof Brown were the working directory, then use of the path name
Courses/CS101 would yield the same file as the absolute path name given above.
Processes can change their working directory by issuing a system call spe01fymg
the new working directory. .

Files and directories in MINIX are protected by assigning each one a 9-bit binary
protection code. The protection code consists of three 3-bit fields, ‘oné for the
owner, one for other members of the owner’s group (users are d1v1déd into group’s
by the system administrator), and one for everyone else. Each ﬁeld hasa bit for
read access, a bit for write access, and a bit for execute access. ‘These 3 bits are
known as the rwx bits. For example, the protection code rwxr-x--x means that the

owner can read, write, or execute the file, other group members can read or execute
(but not write) the file, and everyone else can execute (but not read or write) the file.

For a dlrectory, x Indicates search permission. A dash means that the corresponding
permission is absent.

~ Before a file can be read or written, it must be opened, at which time the permis-
sions are checked. If the access is permitted, the system returns a small integer

SEC. 6.2 PROCESSES AND FILES IN MINIX - 83

'called a file descrlptor to use in subsequent operatlons If the access is prohibited,

an error code is returned.
Another important concept in MINIX is the mounted file system To provide a
clean ‘way to deal with removable media (e.g. diskettes), MINIX allows the file sys-

htem on a diskette to be attached to the main tree. Consider the situation of Fig. 6-

3(a). Before the MOUNT call, the RAM disk (simulated disk in main memory) con-

tains the prlmary, or root file system, and drive 0 contains a dlskette containing
another file system. -

However, the. file system on dnve 0 cannot be used because there 1S no way to
spec:1fy path names on it. MINIX does not allow path names to be prefixed by a drive
le;ter or number; that would be p_remsely_._the kind of device dependence that operat-

- ing.systems-ought to eliminate. Instead, the MOUNT system call allows the file sys-

tem on drive 0 to be attached to the root file system wherever the program wants it
to be. In Fig. 6-3(b) the file system on drive 0 has been mounted on directory b,
thus allowing access to files /b/x and /b/y. If directory b had contained any files
they would not be accessible while drive 0 was mounted, since /b would refer to the
root directory of drive 0. (Not being able to access these files is not as serious as it
at first seems: file systems are nearly always mounted on empty directories.)

Root Drive O

{a) S (b)

Fig. 6-3. (a) Before mounting, the files on drive 0 are not accessible. (b) After
mounting, they are part of the file hierarchy.

Another important concept in MINIX is the special file. Special files are pro-
vided in order to make I/O devices look like files. That way, they can be read and
written using the same system calls as are used for reading and writing files. Two
kinds of special files exist: block special files and character special files. Block
special files are used to model devices that consist of a collection of randomly
addressable blocks, such as disks. By opening a block special file and reading, say,
block 4, a program can directly access the fourth block on the device, without
regard to the structure of the file system contained on it. Programs that do system
maintenance often need this facility. Access to special files is controlled by the
same rwx bits used to protect all files, so the power to directly access I/O devices

“can be restricted to the system administrator, for example.

~ Character special files are used to model devices that consist of character

- streams, rather than fixed-size randomly addressable blocks. Terminals, line

84 | USING MINIX CHAP. 6

printers, and network Iinterfaces are typical examples of character spemal devices.
The normal way for a program to read and write on the user’s terminal is to read
and write the corresponding character special file. When a process is started up, file
descriptor 0O, called standard input, is normally arranged to refer to the terminal for
the purpose of reading. File descriptor 1, called standard output, refers to the ter-
minal for writing. File descriptor 2, called standard error, also refers to the tenm-
nal for output, but normally is used only for writing error messages. a

All special files have a major device number and a minor device number.
The major device number specifies the device class, such as diskette, hard disk, or
terminal. The minor device number specifies which of the devices in the class is
being addressed, for example, which diskette drive. All devices with the same
major device number share the same device driver code within the operating sys-
tem. The minor device number is passed as a parameter to the device driver to tell
it which device to read or write. The device numbers can be seen by listing /dev
with the [s -/ command. .

The last feature we will discuss in this overview is one that relates to both
processes and files: pipes. A pipe is a sort of pseudo-file that can be used to con-
nect two processes together, as shown in Fig. 6-4. When process A wants to send
data to process B, it writes on the pipe as though it were an output file. Process B
can read the data by reading from the pipe-as though it were an input file. Thus,
communication between processes in MINIX looks very much like ordinary file

reads and writes. Stronger yet, the only way a process can discover that the output
file it is writing on is not really a file, but a pipe, is by making a special system call.

Process Process

o ———————————e s

Fig. 6-4. Two processes connected by a pipe.

6.3. A TOUR THROUGH THE MINIX FILE SYSTEM

The MINIX file tree is organized the same way as the standard UNIX file tree.
The standard MINIX file system contains the following directories:

Name - Description -
/bin - Most common system binaries can be copied here from /usr/b.. .
/dev - Special files for I/O devices

fetc - Miscellaneous system administration

/doc - Place to put (user-supplied) online documentation }/’,’3
/lib - Most common libraries can be copied here from /usr/lib N

/tmp - Some utilities generate their temporary files here

SEC. 6.3 - A TOUR THROUGH THE MINIX FILE SYSTEM | 85

_fuser - Empty; can be used for mounting file systems
“fusr ~ -Root of the user file system (usually mounted file system)
/usr/adm - - The /usrladm/wtmp file records logins |
Jusr/ast - Home directory for user ast
/usr/bin _ - - System binaries are kept here
fusr/etc - Main system administration directory
fust/include - System header files _
fusr/include/minix - MINIX-specific header files
/usr/include/sys - More header files
fusr/lib , - Libraries, compiler passes, miscellanea
/usr/lib/tmac - - Holds macro packages for nroff
/usr/man - - Place to put user-written manual pages for man (if any)
/usr/spool - Holds specialized spooling directories
/usr/spool/at - Spooling directory for the at program
{usr/spool/lpd - Spooling directory for line printer daemons (future)
/usr/spool/mail - Spooling directory for local mail '
/usr/spool/uucp - Spooling directory for kermit and uucp (future)
fusr/src - Start of the source tree
{ust/src/commands - Sources for the utility programs (has many subdirectories)
fusr/src/fs - Sources for MINIX file system
fusr/src/lib - Holds library directories
fusr/src/lib/amiga - Sources for Amiga-specific procedures
{usr/src/lib/ansi - Sources for ANSI C procedures
~ Jusr/src/lib/atari - Sources for Atari-specific procedures
/usr/src/lib/ibm - Sources for IBM PC-specific procedures
/usr/src/lib/mac - Sources for Macintosh-specific procedures
{usr/src/lib/other - Sources for other library procedures
fusr/src/lib/posix - Sources for procedures required by POSIX
fusr/src/lib/string - Sources for IBM assembly code strmg procedures
{usr/src/kernel - Sources for MINIX kernel
/usr/src/mm - Sources for MINIX memory manager
/usr/src/test - Sources and binaries for testing MINIX
/ust/src/tools - Utilities for building MINIX boot diskettes
fusr/tmp - Alternative directory for temporary files

Let us briefly examine some of these directories. In /bin we find the most
heavily used programs such as cat, cp, and Is as well as some programs such as
login and sh needed to bring the system up. If /bin is being kept on RAM disk, it
will normally contain a subset of /usr/bin. The idea of putting it on the RAM disk is
to speed up access, of course. If a RAM disk is not being used, it is not necessary to
put any files in bin other than the ones it comes with.

The directory /dev contains the specml files for the I/O devices, mcludmg most
of the following, although not every one is present In each version. Ethernet is not

86 o | USING MINIX CHAP. 6

supported on the 68000, for example. Also, /dev/hd5-9 are for an (optional) second
hard disk. -

Name # Description

/dev/ram 1,0 -RAMdisk

/devimem 1,1 - Absolute memory

/devikmem 1,2 - Kernel memory

/dev/null 1,3 - Data written here vamshes, reads yleld end of file
/dev/port 1,4 - Access to I/O ports

/dev/fd0 2,0 - Diskette drive O

/dev/fd1l 2,1 - Diskette drive 1

/dev/hd0 3,0 - IBM: Entire hard disk 0; Atari: boot block
/dev/hdl 3,1 - Hard disk O, partition 1

/dev/hd2 3,2 - Hard disk 0, partition 2

/dev/hd3 3,3 - Hard disk 0, partition 3

[dev/hd4 3,4 - Hard disk 0, partition 4

/dev/hd5 3,5 -IBM: Entire hard disk 1; Atari entire hard disk 0
/dev/hd6 3,6 - Hard disk 1, partition 1

[dev/hd7 3,7 - Hard disk 1, partition 2

/dev/hd8 3,8 - Hard disk 1, partition 3

/dev/hd9 3,9 - Hard disk 1, partition 4

/dev/console 4,0 - Terminal 0 (main keyboard and screen)

/dev/ity0 4,0 - Same as /dev/console _
/devi/ity] 4,1 -RS232-C port] . "
/dev/ity2 4,2 -RS232-C port 2 '
/dev/ity 5,0 - Current terminal

/dev/lp 6,0 - Line printer (Centronics port)

/dev/net(7,0 - Ethernet

(The IBM diskette combinations are given in Chap. 2.) When /dev/iram is opened
and read, for example, by the command

od —x /dev/ram

the contents of the RAM disk are read out, byte by byte, starting at byte 0. Simi-
larly, reading /dev/imem reads out absolute memory, starting at address 0 (the inter-
rupt vectors). The file /devikmem is similar to /devimem, except that it starts at the

address in memory where the kernel is located. The next file, /dev/null, is the null

device. It is used as a place for redirecting program output that is not needed. Data
copied to /dev/null are lost forever. The final file in this group, /dev/port, is used to
access I/O ports in protected mode on the 80286 and 80386 CPUs.

The next group of files are for the diskette drives, with different names provided
for different sizes (see Chap. 2).

Next come the special files for the hard disks. The first one refers to the entire
device, with regard for the partition structure on it. It is occasionally used for

o
- ",
- .-
L] . T =T
—_

.-"‘"r“-h""'\.‘
N hLs

SEC. 6.3 A TOUR THROUGH THE MINIX FILE SYSTEM 87

reading the boot block, or for copying one raw hard disk to another. - The: other
entries refer to specific partitions. They are used in commands such as df to exam-
ine the amount of available space on a partition. : -

Groups 4 and 5 are for the terminals. The /dev/ttyX entries are used to access a
specific device, such as a modem or serial printer. In contrast, /dev/tty refers to the
current terminal, whatever its number may be.
 The character special file /dev/lp is for the line printer. It is write only. Bytes
written to this file are sent to the line printer without modification (to make it possi-
ble to send escape sequences to graphics printers). Users normally print files by
using the Ipr program, rather than copying files directly to /dev/lp. The latter
method takes care of converting line feed to carriage return plus line feed, expand—
Ing tabs to spaces, etc., whereas the former method does not. Finally, /dev/net is for
networking. -

To prevent problems, it is recommended that you remove entries in /dev that
correspond to nonexistent devices. For example, if you have only 1 diskette drive,
you should remove /devifdl, etc to eliminate the possibility that you inadvertently
use one of them and thus hang the system (which will patiently wait until you insert
a diskette in drive 1). If you have only 360K drives, you can remove /dev/atX, but
if you have 1.2M drives, you should not remove /dev/fdX since they are needed
when using 360K diskettes in your 1.2M drive.

Another important directory is /etc. This directory contains files and programs
used for mounting and unmounting file systems, the system profiles, the termcap

data base, and general system files. For users who have /etc on the RAM disk,

/usr/etc can be used to maintain a copy on the /usr partition.

The directory /lib holds libraries, such as libc.a, passes of the C compiler that
are not normally directly called by users, and certain miscellaneous files related to
compiling. As with bin, the full set of programs is kept in /usr/lib, and the most
important ones copied into /lib. Please note that the cc program, which calls the
compiler passes, has built-in path names using /usr/lib. If you want to install parts
of the compiler in /lib, you will have to edit cc and recompile it.

The /tmp and /usritmp directories are used by many programs for temporary
files. By putting /tmp on the RAM disk, these programs are speeded up.

The directories /user and /usr are empty. They should be used for mounting file

systems. Frequently, /usr will be partition 1 or 2 of the hard disk, and will contain

all the directories listed above, including all the sources.

6.3.1. Mounted File Systems

When MINIX is first started up, the only device present is the root device
(default: RAM disk). After the files and directories that belong on the root device
are copied there from the root file system diskette, MINIX prints a message asking

the user to remove the diskette. It then executes the shell script /etc/rc as the final
step 1n bringing up the system.

88 USING MINIX CHAP. 6

The file /etc/rc. first prints a message asking the user to put the /usr diskette in

drivc 0. Then it pauses to allow the diskette to be inserted and the date entered.
The shell script now executes the command:

/etc/mount /dev/fd0 /usr

to mount the system disk on /usr From this point on, all the files in /usr including
the binary programs in /usr/bin, are available. 1 '

- On a PC with two diskette drives and no hard disk, you should insert a file sys-
tem diskette in drive 1 and type: -

/etc/mount /dev/fd1 /user

If you want to mount the same diskette in drive 1 whenever the system is brought
up can modity /etc/rc to perform the mount on drive 1 analogously to the mount on
drive 0. Alternatively, a hard disk partition can be mounted. Note, however, that
changes made to /etc/rc on the RAM disk will be lost when the system is next
booted unless they are also made to the root file system diskette, Wthh can be
mounted and modified, just like any other diskette. '

If 1t 1s desired to remove the diskette in drive 1 during operatlon first type the
command: -

/etc/umount /dev/fd1

and wait for the prompt. (Note that the program is called umount, just as it is in
UNIX, not unmount.) There is no n in umount. You cannot unmount a device hold-
ing the working or root directory of any process, or which is otherwise in use.

It you remove a diskette while it is still mounted, the system may hang, but it
can be brought back to life by simply re-inserting the same diskette. If you remove
a diskette while it 1s still mounted and insert another in its place, the contents of
both file systems will be seriously damaged and information may be irretrievably
lost (see below about repairing damaged file systems). Experienced MS-DOS users
who are used to constantly switching diskettes without telling the operating system
should post discrete KEEP OFF signs on their drives as a reminder.

Although it is permitted to insert a non-MINIX diskette in a drive (e.g., to read
an MS-DOS diskette), only MINIX file system diskettes can be mounted. Attempts to
mount a diskette not containing a MINIX file system will be detected and rejected.

6.4. HELPFUL HINTS

In this section we will point out several aspects of MINIX that will frequently be
useful. Most of these relate to areas in which MINIX is different from UNIX, sO even
experienced UNIX users should read it carefully.

_back up a mounted file system, but only if no background processes are runmng To

SEC. 6.4 ' HELPFUL HINTS . 89

6.4.1. Making Backups

As a starter, it is wise to back up your files periodically. To make a backup, first
format a diskette as you usually do. If you want to back up a diskette and you have
two diskette drives, unmount the file systems in drives 0 and 1. It is possnble to

be doubly safe, gwe a sync command Insert the newly formatted diskette in drive

1, and then type:

cp /dev/fdo /dev/fd1

to copy 1nformat10n from drive O to drwe 1 assuming you want to copy 360K

diskettes. For 1.2M diskettes on the IBM PC, use /dev/atO and /deviatl. When the

~drive lights go out, the diskettes can be removed.

If you have one diskette drive and a hard disk, to back up a diskette, insert the
diskette to be backed up, and copy it to the hard disk. Then insert the new diskette

and copy the image back. The following three commands will do the job:

cp /dev/td0 /usrtmp/image
cp /usrtmp/image /dev/fd0
rm /usr/tmp/image

This command sequence presumes that enough free space exists in /usr/tmp.
To back up a hard disk, it is best to do it directory by directory. Format enough

blank diskettes, and put empty file systems on them using mkfs. Mount one of these

diskettes. Then use the backup program. For example, one might use the sequence:

mkfs /dev/fd0 360
/etc/mount /dev/fd0 /user

backup —jmvz /usr/ast /user/ast
/etc/umount /dev/fd0

The backup program has a varlety of useful flags. The —j flag suppresses the copy-
ing of useless junk, like old core images. The —m flag is used to backup large direc-
tories over multiple diskettes. The —v flag enables verbose mode. In this mode the
names of the files are printed as they are backed up. Finally, the -z flag arranges for
compress to be called to compress the files as they are backed up. While compres-
sion slows up backup considerably, it also doubles the effective capacity of each
diskette. Note that backup also backs up all the subdirectories in the directory it is
working on (i.e., it is recursive). '

Suppose a directory is backed up onto a diskette Monday evening. On Tuesday,
a number of files are changed in that directory. If the backup diskette from Monday
is mounted (instead of a blank diskette) and hackup called, only those files that have

' changed since the previous backup will be copied. Be sure to use the same flags

(i.e., do not mixed compressed and uncompressed).

90 ~ USING MINIX CHAP. 6

6.4.2. Printing

Files can be prmted usmg the lpr program. It can be given an expllclt list of
files, as In | -

Ipr file1 file2 file3 & _
If no argumems are supplied, Ipr prints its standard input, for example:
or file1 file2 file3 | Ipr & '

Note that Ipr is not a spooling daemon. It sits in a loop copying files to /dev/lp For
this reason, it should be started off in the background with the ampersand, so the

user can continue working while printing is going on. Only one Ipr at a tlme may
be running.

6.4.3. Checking on Disk Space

Disk space always seems to be in short supply, no matter how big the disks are.
To find out how much space and how many i-nodes are left on diskette 0, type:

df /dey/de

Similar commands can be used for other devices, including /deviram and the hard
‘disk partitions. When df is called with no arguments, it checks /etc/mtab and prints
the statistics for the root device and all mounted file systems.

6.4.4. Profiles

When you log in, the shell checks to see if there is a file ,p'roﬁfe in your home.

' directory. If it finds one, it executes the file as a shell script. This file is commonly
used to set shell variables, sty parameters, and so on. See /usr/ast/.profile as a 51m-—
ple example. The system profile, /etc/rc is executed when MINIX is booted.

6.4.5. Stack Size

The IBM PC does not have any protection hardware. Neither do the Atari,
Amiga, or Macintosh. As a result, if a program’s stack overruns the area available
for it, it will overwrite the data segment. This usually results in a system crash.
When a program crashes unexpectedly or acts strange, it is probably worthwhile to
find out how much memory is allocated for it (see the “memory’’ column in the
output of size). In many cases, increasing the stack space with chmem will make it
work again. On the IBM PC, the largest executable program has 64K instruction

l.l:t';}l'.

.......

-
T AT

' ‘,;r-_---\.\

space and 64K data space; the 68000 versions have no limit. To get separate | “_,»)
instruction and data spaces, the =i flag should be used when compiling programs.
When working with unreliable programs, doing syncs frequently is advisable.

SEC. 6.4 HELPFUL HINTS 91

The problems with memory allocatlon are due to a large chunk of memory
being taken up by the operating system, its buffers, and the RAM disk, plus the fact
that multiple programs can be running at once. This, plus the lack of hardware pro-
tection, requires that a more economical approach be taken to memory use than the

'standard MS-DOS method of just giving each program the whole machine to itself.

In practice, once the sizes have been set right for a given configuration, they need
not be fiddled with any more.

It sometimes happens that a program (or a cempller pass) cannot be executed

‘due-to lack of memory for it, When this happens, the shell may a message of the
form program. cannot execute The solution 1s to run fewer programs at once, or

reduce the program s size with chmem. The amount of stack space assigned to the
shell, make, etc. in the standard distribution may not be optimal for all applications.
Change it if problems arise. To see how much is currently assigned, type

size /usr/bin/* | mined

In general, if a program goes berserk or the compiler gives nonsensical error mes-
sages, the first thing to suspect is stack everrun, which can be tackled with chmem.

6.4.6. Compilati'on Problems

Space is often tight, especially when the amount of program memory is only
512K. It can happen that the C compiler fails due to lack of space, in Wthh case
the -F flag should be used. - -

Although an individual compilation can get into space problems, far more likely
1s that make will be unable to run the compiler. The problem is that in addition to

the login shell and make itself, several other programs may be running simultane-

ously, including other shells started by make If problems arise, several approaches
can be taken, One is to run;

" make -n >s

'Shs_

to find out what make wants to do, put 1t on a shell script, and then execute it
without make. Often this helps. |
“Another method is to fiddle with the stack sizes of make, sh, and the compiler
passes, c¢pp, cem, opt, cg, and asld (some of which can be found in lusr/lib). By
reducing the stack allocated to some of these programs using chmem it is frequently
possible to solve the problem. Of course if they are given too little stack, they may
go berserk. Thus fine tuning the sizes requires some patience. -
One last note in this regard, sometimes it is necessary to do something as root.
There are two ways to become root: to log in as root and to use the su program.
They are not quite identical. When using su an additional shell is created, taking up

memory. If space problems occur after having become root using su, it is best to hit
CTRL D twwe to log out, then log in as root directly.

92 * USING MINIX CHAP. 6

6.4.7. Temporary Files

Several of the utility programs, including the C compiler, create their temporary
files in /tmp, on the RAM disk. If the RAM disk fills up, a message will be printed
on the terminal. The first thing to do is check /mmp to see if there is any debris left
over from previous commands, and if so, remove it. If that does not solve the prob-
lem, temporarily removing some of the larger files from /bin or /lib will usually be
enough. These files can be restored later by mounting the root file system on any
drive and copying the needed files from it. In a pinch, you can mount a diskette on
/tmp to provide more space for a command that needs a lot of it. When cc fills up
/tmp, the T flag can be used to put the temporary files in another directory.

6.4.8. Aborting Commands

MINIX, like UNIX, will not break off a system call part way through just because
the DEL key has been struck. When the system call in question happens to be an
EXEC, which is loading a long program from a slow diskette, it can take a few

seconds before the shell prompt appears. Be patient. Hitting DEL again makes
things worse, rather than better.,

6.4.9. System Status Reporting

Although 1t is rea-lly' intended as adébugging aid, rather than a permanent part
of the system, on the IBM PC version the F1 and F2 function keys cause dumps of
some of the internal tables to be printed on the screen. (For the 68000s, other keys

~ are used, as described later.) F1 gives a dump like ps, but instantly. Frequently, the

system appears to be stopped, but it is actually thinking its little head off and using
~ the RAM disk, which, unlike the other disks, is not accompanied by whirring and
clicking noises and flashing lights. The nervous user can press F1 to see the internal
process table to verify that progress is still being made. The F1 and F2 keys are
intercepted directly by the keyboard driver, so they always work, no matter what
the computer is doing. The values in the columns user and sys are the number of

clock ticks charged to each process. By hitting F1 twice, a few seconds apart, it is
possible to see where the CPU time is going.

6.4.10. Escape Sequelices -

MINIX supports ANSI -eScape sequence's as well as Ber-keley termcap entries.

The latter can be found in the file /etc/termcap. The entries use the ANSI escape

sequences. The TERM variable should be set to minix to use these entries. A -

library routine, termcap.c is provided to manipulate them.

) 'q. _-l . .
Lo
N

SEC. 6.4 HELPFUL HINTS | 93

6.4.11. Serial Lines

Communication with the outside world over a modem is possible. The number
of RS232 ports' supported in controlled by the constant NR_RS_LINES defined in
kernel/tty.h. This constant should be set to the proper number of ports for your
configuration, since each port requires about 1K of table space in the kernel. To log

into other systems or transfer files, see the manual pages for kermit, rz, sz, and term.
On the Atari, stterm is also available. |

6.4.12, Transfefring Files to and from Other Operating systems

It is possible to copy files from an MS-DOS disk to MINIX or vice versa. See the
description of dosread and doswrite for details. Similarly, see tosread and toswrite

~ for the Atari, macread and macwrite for the Macintosh, and transfer for the Amiga.

6.4.13. Keyboard Mapping

The ASCII codes produced by the IBM PC keyboard are determined by
software, not hardware. A mapping has been chosen to try to produce a unique
value for each key, so programs can see the difference between, for example, the +
in the top row and the + in the numeric keypad. Since the keyboards of the various
machines differ, the mappings are not identical. To see which code or codes a

given key produces, use od b, and then type the key or keys followed by a carriage
return and a CTRL-D. o | -

6.5. SYSTEM ADMINISTRATION

Since MINIX is in principle a multiuser timesharing system, not unlike what
large computer centers run, you will have to learn how to administer your system.
Fortunately, doing this is not difficult. System administration tasks have to be done
by the superuser. Superusers have more power than ordinary users. They can
violate nearly all of the system’s protection rules. Although there is no Hippocratic
Oath for superusers (yet), tradition requires them to exercise their great power with
care and responsibility. Superusers get a special prompt (#), to remind them of their
awesome power. | S

To become superuser, login as roos using the password Geheim. (Notice the

. Egpital G). Alternatively, use the su program with Geheim as password. Please
take note that these two methods of becoming superuser are not quite the same.

Using su causes an extra shell to be created. If you are short on memory, and intend

to do something complicated as superuser (such as running a large make job), you
may have to log out and log in again as root.

94 - USING MINIX CHAP. 6

6.5.1. Making New File Systems

One of the things-that superusers do is make new file systems. This is possible

using the program mkfs (make file sysl:em) To make an empty 360 block file sys-
tem on dlskette 0, type:

mkfs /dev/fdo 360

When the program finishes, the file system will be ready to mount. On a system
with only one diskette drive and_no hard disk,. mkfs will first have to be copied to

/bin, (on the RAM disk), the /devifd0 file system unmounted, a blank diskette
mserted into drive 0 and then the file system made.

It is also possible to make a file system that is initialized with files and direc-
tories. A command for doing this is:

mkfs /dev/fd0 proto

where proto is a prototype file. The manual entry for mkfs (In Chap 8) gives an
example of a prototype file.

6.5.2. File System Checking

~ File systems can be damaged- by system crashes, by accidently removing a
mounted file system, by forgetting to run sync before shutting the system down and

in other ways. Repairing a file system by hand is a tricky business, so a program,
called fsck, has been provided to automate the job. It is best to first copy fsck, to the
root file system and then unmount the file system to be repaired, unless it is the root

. file system. If the root file system is on a hard disk partition, it is best to reboot

MINIX and run fsck from a diskette so that the root file system 1s unmounted whlle
fsck is modifying it.

The simplest way to repair a file system is to run fsck in automatic mode. To

repair /dev/hdl, for example, just type:

cd / |

cp /usr/bin/fsck /fsck
/etc/umount /dev/hd1

fsck —a /dev/hd1
/etc/mount /dev/hd1 /usr -

Fsck will run, ask some questions, answer its own questions, and fix everything.
When 1t is done, you can remount the repaired file system and continue. Other
options are described in the manual page for fsck.

SEC. 6.5 SYSTEM ADMINISTRATION | - 9§

6.5.3. The /etc Directory

The /etc directory contains several files that superusers should know about.

They are: '
~Name - Description , .
gettydets - Used for configuring dial in lines using modems
group - Contains names of the user groups '
message - Message of the day
passwd - Password file
IC - Shell script executed after the system is booted
setup_move - Additional hard disk setup (remove after installation) - ,
setuproot - Used to set up the hard disk RAM image (remove after installation)
setup.usr - Used to set up the hard disk partition for /usr (remove after installation)
termcap - Berkeley termcap entries for MINIX
ttys - Enables/disables RS-232 ports for use as terminals
ttytype = - Terminal configuration '

- Probably the most important of these is the password file, /etc/passwd. You can
_ enter new users by editing this file and adding a line for each new user. The
o entry for a user named fozzie might be: -

(o fozzie::15:1:Fozzie the Bear:/usr/fozzie:/bin/sh

The entry contains seven fields, separated by colons. These fields contain the
login name, password (initially null), uid, gid, name, home directory, and shell
for the new user. When a new user is entered, the corresponding home direc-
tory must also be created, using mkdir, and its owner set correctly, using chown
and chgrp. Each user must have a unique uid, but the numerical values are
unimportant. It is probably adequate to put all ordinary users in group 3, unless
there really are distinct groups of users. When the new user logs in for the first
time, he should choose a password and enter it using passwd.

Another important file is /etc/rc. Each time the system is booted, this file is
run as a shell script just before the

login:

message 1s printed. It can be used to mount file systems, request the date, erase

" temporary files, and anything else that needs to be done before starting the sys-

S tem. It also forks off update, which runs in the background and issues a SYNC
- system call every 30 seconds to flush the buffer cache.

If you do not have a hard disk and want to use two diskette drives during

normal operations, it may be convenient to modify /etc/rc to mount /dev/fdl on

L /user during system boot. If you do this, you can also change /etc/passwd to put

your home directory on /user instead of /usr. Of course you can also change
/etc/rc t0 mount a hard disk partition.

96

USING MINIX CHAP. 6

‘The file /etc/ttys contains one line for each terminal in the system. During

startup, init reads this file and forks off a login process for each terminal. When
the console is the only terminal, #fys contains only 1 line. -

Also contained in /etc are the programs mount, and umount for mounting
and unmounting file systems, respectively.

When any of the files on the RAM disk, such as /etc/passwd are modlﬁed
the changes will be lost when the system is shut down unless the modified files
are explicitly copied back to the root file system. This can be done by mountmg
the root file system diskette and then copylng the ﬁ]es with cp.

6.5.4. Miscella'neous Notes

A few MINIX programs can only be executed by the superuser. Some of

‘these, such as df, are owned by the root and have the SETUID bit on, so that

when they are executed, the effective uid is that of the superuser, even though
the real uid 1s not. | -

In general, if a program, prog, needs to run as the superuser but is to be
made generally available to all users, 1t can be made into a SETUID program
owned by the root by the command lmes -

chown root prog
chmod 4755 prog

Needless to say, only the superuser can execute these commands. The shell

-script fixbin can be run by the superuser to set all the permnssmns (and sizes) as
follows:

fixbin /bin /bin

'If the two arguments are different, the executable files will be first copied from

the first directory to the second one.

